STUDY PLANS
FOR THE
ENVIRONMENTAL STUDIES PROGRAM
IN THE
CHUKCHI & BEAUFORT SEAS
2013

Olgoonik Fairweather LLC
3201 C Street, Suite 700
Anchorage, Alaska 99503-3934
June 2013
TABLE OF CONTENTS

1.0 CHUKCHI SEA ENVIRONMENTAL STUDIES PROGRAM OVERVIEW ... 6

1.1. Introduction .. 6
1.2. Ecological Importance of the CSESP .. 6
1.3. General Objectives .. 7
1.4. Project Area .. 7
1.5. Period Of Study ... 7
1.6. Vessels ... 8
1.7. Data and Reports .. 8
1.8. Schedule .. 9
 1.8.1. Field Studies .. 9
 1.8.2. Meetings ... 9
 1.8.3. Deliverables ... 9

1.9. Outline .. 9

2.0 PHYSICAL OCEANOGRAPHIC MEASUREMENTS ... 10

2.1. Introduction .. 10
 2.1.1. Background and Importance ... 10
 2.1.2. Purpose of Study .. 10

2.2. Methods and Procedures .. 10
 2.2.1. Sampling or Survey Design and Technical Rationale .. 10
 2.2.2. Analytical Procedures .. 10
 2.2.3. Data-storage Procedures .. 11
 2.2.4. Quality-control Procedures ... 11

3.0 PLANKTONIC COMMUNITIES .. 12

3.1. Introduction .. 12
 3.1.1. Importance .. 12
 3.1.2. Purpose .. 12

3.2. Methods and Procedures .. 12
 3.2.1. Sampling or Survey Design and Technical Rationale .. 12
 3.2.2. Data-collection Procedures .. 12

3.3. Analytical Procedures ... 13
 3.3.1. Metazooplankton .. 13
 3.3.2. Data-storage Procedures .. 13
 3.3.3. Quality-control Procedures ... 13

4.0 OBSERVATIONS OF OCEAN ACIDIFICATION .. 14

4.1. Introduction .. 14
 4.1.1. Background and Importance ... 14
 4.1.2. Purpose of Study .. 14

4.2. Methods and Procedures .. 14
 4.2.1. Sampling or Survey Design and Technical Rationale .. 14
 4.2.2. Sample Data Collection Procedures .. 14
 4.2.3. Analytical Procedures .. 15
 4.2.4. Data-storage Procedures .. 15
4.2.5. Quality-control Procedures ... 15

5.0 BENTHIC ECOLOGY .. 16

5.1 Introduction .. 16
5.1.1. Background and Importance .. 16
5.1.2. Purpose of Study ... 16
5.1.3. Objectives .. 16
5.2 Methods and Procedures ... 17
5.2.1. Sample Data Collection Procedures .. 17
5.2.2. Analytical Procedures .. 17
5.2.3. Data Storage .. 17
5.2.4. Quality Control Procedures .. 18

6.0 SEABIRD ECOLOGY .. 19

6.1 Introduction .. 19
6.1.1. Background and Importance .. 19
6.1.2. Objectives .. 19
6.2 Methods and Procedures ... 19
6.2.1. Sampling or Survey Design and Technical Rationale 19
6.2.2. Data Collection Procedures .. 20
6.2.3. Analytical Procedures .. 20
6.2.4. Data Storage Procedures ... 21
6.2.5. Quality Control Procedures .. 21

7.0 MARINE MAMMAL ECOLOGY .. 22

7.1 Introduction .. 22
7.1.1. Background and Importance .. 22
7.1.2. Objectives .. 22
7.2 Methods and Procedures ... 22
7.2.1. Sampling Design ... 22
7.2.2. Data-collection Protocols and Procedures .. 22
7.2.3. Analytical Procedures .. 23
7.2.4. Data-storage Procedures ... 23
7.2.5. Quality-control Procedures .. 23

8.0 CHUKCHI SEA ACOUSTIC MONITORING 22

8.1 Introduction .. 24
8.1.1. Background and Importance .. 24
8.1.2. Purpose of Study ... 24
8.1.3. Objectives .. 24
8.2 Methods and Procedures ... 24
8.2.1. Equipment and Sampling Parameters .. 24
8.2.2. Data Extract and Backup ... 25
8.2.3. Analytical Procedures .. 25
8.2.4. Quality-control Procedures .. 26

9.0 BEAUFORT SEA ACOUSTIC MONITORING 27

9.1 Introduction .. 27
9.1.1. Background and Importance ... 27
9.1.2. Purpose of Study .. 27
9.2. Methods and Procedures .. 27
 9.2.1. Equipment Description and Field Procedures ... 27
 9.2.2. Sample Data Collection Procedures ... 28
 9.2.3. Analytical Procedures .. 28
 9.2.4. Data Storage .. 28
 9.2.5. Quality Control Procedures ... 28
10.0 METOCEAN INSTRUMENTATION .. 30
 10.1. Summary ... 30
 10.2. Metocean Buoys .. 30
 10.3. ULS Packages (IPS + ADCP) .. 31
List of Appendices

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Maps of Study Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Prospect-specific Study Areas</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Chukchi Sea Acoustic and Metocean Instrumentation</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Beaufort Sea Acoustic and Metocean Instrumentation</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Project Organization Charts</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Project Schedule</td>
</tr>
</tbody>
</table>
1.0 CHUKCHI SEA ENVIRONMENTAL STUDIES PROGRAM OVERVIEW

1.1. Introduction

In February 2008 the Bureau of Ocean Energy Management (BOEM) held Lease Sale 193 of blocks in federal waters of the northeastern Chukchi Sea. ConocoPhillips (COP) obtained 98 lease-blocks within two main former well-site areas, Klondike and Burger. Shell Exploration & Production Company (Shell) obtained 275 lease-blocks near the Crackerjack, Shoebill, and Burger well sites. Statoil USA Exploration & Production (Statoil) obtained 16 lease-blocks north of Burger. In the open-water seasons of 2008 and 2009, COP operated, on behalf of itself and Shell, an integrated ecosystem-based environmental studies program to collect baseline data in the Chukchi Sea. Starting in 2010, Olgoonik Fairweather LLC (OF) began to operate the Chukchi Sea Environmental Studies Program (CSESP), jointly funded by COP, Shell, and Statoil. Information on the project is available online at www.chukchiscience.com. This website includes an interactive map during the field season showing the real-time location of the vessels in relation to the study area, maps from all survey years, all final reports and presentations, information on the science team, and information on the Health, Safety, & Environment (HSE) program. Maps of the 2013 program are provided in Appendix A.

OF is a joint venture between Olgoonik Corporation, the Village of Wainwright native corporation, and Fairweather Science LLC. OF provides contractor management, data management, HSE, and all logistics throughout the season, as well as obtains all necessary permits required for operation. The program team has grown to over 120 personnel from contractors including Aldrich Offshore Services, Norseman Maritime Charters, SAExploration, Resource Data Inc., SALA Medics, Inupiat Resources LLC, University of Alaska Fairbanks, ABR Environmental & Research Inc., LAMA Ecological, ASL Environmental Services, RPS Evans Hamilton Inc., JASCO Applied Sciences, and Greeneridge Sciences Inc. A list of all contractors and personnel are included on the project website and organization charts are provided in Appendix B.

The CSESP includes various disciplines of the marine ecosystem, including physical oceanography, ocean acidification (new in 2010), plankton ecology (zooplankton and primary productivity), benthic ecology (infaunal and epibenthic communities), seabird ecology, marine mammal ecology. In addition, several types of instruments (sub-surface and surface moorings) are deployed to measure current and ice velocities, profiling of ice, air, and water parameters, and passive acoustic monitoring.

In addition to the Chukchi Sea study, OF is providing logistical support for deployment of physical oceanography and acoustic instruments in support of Shell operations in the Beaufort Sea. A brief discussion of the Beaufort Sea program is provided in Sections 9 and 10.

1.2. Ecological Importance of the CSESP

The CSESP will continue to contribute to the growing baseline data that will be used by a variety of stakeholders to monitor the environment throughout oil and gas activities. The Chukchi Sea is a part of the western Arctic Ocean but is closely linked to the Pacific Ocean through the Bering Sea and Bering Strait. The northward flow of water into the Chukchi Sea imports animals and nutrients, influences the oceanography, and, ultimately, influences the distribution of sea ice in the Chukchi Sea. Transportation of nutrient-rich water from the North Pacific Ocean makes the Chukchi Sea an important habitat for resident and transient marine mammals, seabirds, and fishes that use the Chukchi Sea for its productive ecosystem.

Climate change may have profound impacts on the Chukchi Sea ecosystem. Both interannual and long-term variation in climate can affect the transport of water and, thus, the composition, distribution, standing stock, and production of organisms and their predators within the Chukchi Sea. Disturbance to the short food chains of the Arctic has the potential for large effects on higher trophic levels (i.e., seabirds and marine mammals). With arctic warming, arctic shelves may be impacted by ocean acidification.
1.3. General Objectives

The overall purpose of the CSESP is to provide to COP, Shell, and Statoil necessary baseline information about the marine environment in their respective lease areas that can be used in applications for permits, in National Environmental Policy Act (NEPA) compliance documents, and in other documents and to help manage these resources and plan for mitigation. This study will provide valuable information for the regulatory agencies to conduct realistic evaluations on the potential impacts of oil and gas activities and, thus, issue permits with reasonable stipulations and guidance. It also will contribute to the overall knowledge of the northeastern Chukchi Sea marine ecosystem. It is anticipated that future studies in the lease areas will involve additional collaborators including, but not limited to, BOEM, the North Pacific Research Board (NPRB), the National Marine Fisheries Service (NMFS), the U.S. Fish and Wildlife Service (USFWS), the U.S. Geological Survey (USGS), the Alaska Eskimo Whaling Commission (AEWC), the Alaska Beluga Whale Committee (ABWC), the Ice Seal Committee, and the Alaska Eskimo Walrus Commission.

1.4. Project Area

In 2008 and 2009, the program consisted of two prospect-specific study areas: “Klondike” for COP and “Burger” for Shell. In 2010, an additional prospect-specific study area (“Statoil”) was added north of Burger for Statoil (Figure 1). In 2011 and 2012, the program was expanded to a regional survey that encompassed the three prospect-specific study areas plus areas to the west, east, and north, including Hanna Shoal (Figure 1). The study design for 2011 and 2012 was based on the systematic station and transect grid used during the 2008–2010 CSESP but was expanded to a coarser scale to cover a greater area in a shorter amount of time. The 2013 program includes the sample grid and general timing from 2010, surveying only the prospect-specific study areas of Klondike, Burger, and Statoil. The finer transect scale in the prospect-specific study areas will be maintained to allow for interannual data continuity.

For the 2013 program, the physical and biological oceanographic sample stations will be laid out on a 30 x 30 nautical mile (NM) box with stations spaced every 7.5 NM on each prospect-specific study area, as shown on Figure 1. A total of 72 stations are identified on this grid; 25 of these are around COP’s Klondike study area, 25 in Shell’s Burger study area, and 22 in Statoil’s study area. However, not all disciplines will be sampled at each station. Water samples will be collected at each station and some aspects will be analyzed (physical oceanography, chemical oceanography, and primary productivity) depending on available budget and actual vessel days. Zooplankton will be sampled at every other station, and benthic infauna will be sampled at up to nine stations per prospect-specific study area (on only one cruise).

Additionally, a transect including stations to be sampled for physical oceanography will be surveyed, as logistics and time allow, in support of the Distributed Biological Observatory (DBO) program managed by NOAA and the Pacific Arctic Group. This DBO line runs from just offshore southwest of Wainwright and extends offshore, toward the northwest, ~145 NM (Figure 2).

1.5. Period of Study

The CSESP consists of two “mooring” cruises to deploy and/or retrieve the various acoustic and metocean instruments distributed throughout the northeastern Chukchi Sea (Figure 2); and two “science” cruises to collect biological information, as described above and detailed below. The mooring cruises consist of deployments in the early summer (early August) and retrievals at the end of the season (early October) and deployments of overwintering instrumentation. A planned schedule is provided in Appendix C. The mooring cruises will occur jointly on the R/V Westward Wind and R/V Norseman II. The science program consists of two prospect-specific cruises beginning mid-August. All science cruises will occur on the Westward Wind.
1.6. Vessels

The data will be collected from two vessels: the R/V Westward Wind and the R/V Norseman II, pictures of which are provided below. The *Westward Wind* is a ~165-ft-long aft-house vessel. The *Norseman II* is a ~115-ft-long forward-house vessel. Both vessels were used in 2009–2012 for this program. All vessels have been outfitted with the appropriate cranes, winches, and navigation aids to allow safe and efficient deployment of all gear and equipment.

1.7. Data and Reports

Scientific data are collected with a proprietary software system developed for the CSESP in 2009 by TigerSoft©. The software includes three components: TigerNav, TigerObserver, and TigerObserver Server. Data are collected 24 hours a day and are continually monitored and maintained by onboard data managers. All data collected by scientific personnel aboard the vessels are entered into electronic databases with Panasonic Toughbook computers. Each scientific discipline uses TigerObserver to enter their respective data and notations (such as event markers). The TigerObserver systems on each Toughbook are synchronized to the main server system (Tiger Observer Server) via a wireless system. Also synched to the system, including the
Toughbooks, is the navigational data entry/storage system (TigerNav), which provides UTC time, date, vessel location, weather, water depth, and thermostalinographic information in auto-populated data fields.

Data obtained through laboratory processing of field sample collections also will be delivered to OF and sponsors. Examples of these data include organism abundance and biomass measurements, chlorophyll concentrations, sediment grain size, oceanographic data such as temperature, salinity, chlorophyll-maximum layer depth, and acoustical recordings and analysis. Additionally, all photographs taken in the field and of laboratory specimens are included in the deliverables from the disciplines to OF and sponsors.

Reports that summarize the findings from each discipline will be delivered to OF and later made available on the www.chukchiscience.com website. Each discipline will submit a draft report that is reviewed by fellow scientists and then revised into a final report. The report from each discipline will include background information, materials and methods, results of the analysis, discussion, and conclusions.

1.8. Schedule

1.8.1. Field Studies

All field personnel will attend a Health, Safety, and Environment seminar in Anchorage—8-12 July 2013.

Mooring deployment (R/V Norseman II and R/V Westward Wind)—~27 July—2 August 2013
Science cruises (R/V Westward Wind)—~4—21 August and ~14 September to ~6 October 2013
Mooring retrieval and deployment of overwintering recorders (R/V Norseman II)—~8—17 October 2013

1.8.2. Meetings

Field-debriefing meeting in Anchorage, AK—December 2013
Primary Investigator (PI) Meeting/Alaska Marine Science Symposium in Anchorage, AK—Late January 2014

1.8.3. Deliverables

Draft Report—May/June 2014
Final Report—August 2014
Field and laboratory data submission—June 2014

1.9. Outline

This Study Plan is separated into specific disciplines that will introduce the importance of the discipline then outline the methods and procedures for both data collection and analysis.

This document is outlined as follows:

Section 1.0 Overview
Section 2.0 Physical Oceanographic Measurements
Section 3.0 Planktonic Communities
Section 4.0 Observations of Ocean Acidification
Section 5.0 Benthic Ecology
Section 6.0 Seabird Ecology
Section 7.0 Marine Mammal Ecology
Section 8.0 Chukchi Sea Acoustic Monitoring
Section 9.0 Beaufort Sea Acoustic Monitoring
Section 10.0 Metocean Instrumentation
2.0 PHYSICAL OCEANOGRAPHIC MEASUREMENTS

THOMAS J. WEINGARTNER, PhD

INSTITUTE OF MARINE SCIENCES, UNIVERSITY OF ALASKA, FAIRBANKS, AK

2.1 Introduction

2.1.1 Background and Importance

The Chukchi and Beaufort seas are linked, atmospherically and oceanographically, to the Pacific Ocean. This connection influences the wind and wave regimes, the seasonal distribution of sea ice, the regional hydrologic cycle, and the water masses and circulation characteristics of the Chukchi Sea shelf. The northward flux of heat, nutrients, carbon, and organisms from the Pacific Ocean through the Bering Strait bequeath the Chukchi shelf with physical and ecological characteristics that are unique among arctic shelves. Much of our understanding of the Chukchi shelf derives from the early syntheses of modeling and theoretical work and sea-ice studies performed in the late 1980’s and early 1990’s. Our work with the CSESP contributes to the growing knowledge of the oceanography of the Chukchi Sea and attempts to understand the spatial and temporal variability within the region.

2.1.2 Purpose of Study

The purpose of this study is to map circulation characteristics and attempt to understand the physical-oceanographic influences on biological oceanography and production. Multiple years of data will be necessary to forecast allocation in support of exploratory drilling and eventual development. The physical oceanography may influence design considerations of oil and gas operations and spatial and temporal patterns of biological production including the distribution and abundance of organisms.

2.2 Methods and Procedures

2.2.1 Sampling or Survey Design and Technical Rationale

Water samples will be collected from a conductivity-temperature-depth (CTD) at every oceanographic station over the course of two science cruises. Water samples will be collected and preserved for nutrients and chlorophyll measurements. The CTD include a fluorometer (as an index of chlorophyll biomass) and a transmissometer (as index of water-column turbidity).

CTD data will be collected with a Seabird profiler with a descent rate of no more than 30 meters/minute. A sea surface temperature, salinity, and fluorescence (SSTSF) system will include a flow monitor in the intake system, and the data stream will be blended with the ship’s navigation system so that GPS time and position are recorded. The SSTSF data will be subjected to quality control editing that removes erroneous data caused by the ship stopping at stations (due to mixing of surface and subsurface waters by vessel maneuvering) and identifiable instances biofouling. At each CTD cast, the operator will record time of CTD deployment and GPS position. Once the CTD is ready to descend through the water column, the operator will also record the temperature and salinity values. (This will allow us to compare the underway system values with the CTD data; which is usually more accurate than the underway system.).

Analytical Procedures

All of the processing procedures used are routine and are based on common physical-oceanographic standard practices used at the Institute of Marine Sciences and most other oceanographic institutions. Hydrographic processing of the CTD data will include application of calibration values and our standard quality-control routines used in processing CTD data sets. Standard procedures are to be used for assessing the SSTSF and remotely-sensed images, which are all geo-referenced. Our analyses will include describing the seasonally (and, if possible, shorter-period) variations in fronts, water masses, geostrophic current fields, and stratification. The analyses will provide an estimate of data quality and simplified analyses (e.g., means and
variances) of the circulation within the study area. Time permitting, we will examine shorter-period variations in the currents.

2.2.2. Data-storage Procedures

Data files collected during cruises will be backed up after each cast with multiple copies sent to UAF. At UAF, data are backed up routinely onto departmental servers.

2.2.3. Quality-control Procedures

We require the manufacturer’s pre- and post-season calibration values for the CTD temperature and conductivity sensors, therefore, the CTD will be sent to the manufacturer immediately after the last science cruise so that the post-season calibration values are available as soon as possible after the end of the season. The underway sensors will also be calibrated prior to and after the cruise by the manufacturer. We will examine for systematic offsets between the CTD surface values and the underway system (usually in temperature).
3.0 PLANKTONIC COMMUNITIES

RUSSELL R. HOPCROFT, PhD

INSTITUTE OF MARINE SCIENCES, UNIVERSITY OF ALASKA, FAIRBANKS, AK

3.1 Introduction

3.1.1 Importance

The Chukchi Sea represents a complex gateway into the Arctic Ocean. Large quantities of Pacific nutrients, phytoplankton, and zooplankton all enter the region through the Bering Strait in a complicated mixture of water masses (i.e., Alaska Coastal, Bering Shelf, and Anadyr Water), each with unique assemblages and quantities of zooplankton. This inflow is diluted by Coastal Arctic waters carried along by the East Siberian Current and water carried in from the deeper waters of the Canada Basin or Chukchi Plateau. This inflow is ultimately responsible for the high productivity of the Chukchi Sea in comparison with adjoining regions of the Arctic Ocean. To a large extent, the spatial distribution of the zooplankton communities is tied to the different water masses present in this region.

3.1.2 Purpose

Our study will describe spatial and seasonal characteristics of the plankton (zooplankton) communities in the study areas. A secondary objective is to obtain opportunistic samples of zooplankton where bowhead whales are observed feeding to determine both the type of prey as well as the concentration that elicits bowhead feeding activity. Our challenge is to understand what forcing features lead to the high observed temporal variability in this ecosystem, and how this will be expressed under various climate change scenarios. Without such knowledge, it will be impossible to attribute if changes observed in the ecosystem are driven by climate verses more localized impacts such as those associated with oil and gas activities.

3.2 Methods and Procedures

3.2.1 Sampling or Survey Design and Technical Rationale

Nutrients and phytoplankton (as chlorophyll only) will be sampled at fixed depths for all stations. As in previous years, the multicellular meta-zooplankton will be collected with two different plankton nets at half of the stations in the prospect-specific areas, and at all DBO stations. Together, nutrients, phytoplankton, and metazooplankton form effective biological tracers of the waters masses present in this region.

3.2.2 Data-collection Procedures

Routine methods are nearly identical to CSESP’s 2008-2012 program. Metazooplankton will be collected routinely by a pair of 150-µm mesh Bongo nets of 60-cm diameter hauled vertically. To target larger, more mobile zooplankton, a set of 60-cm-diameter 505-µm Bongo nets will be deployed in a double-oblique tow while the ship is moving at 2 knots. All nets are equipped with flow meters. Upon retrieval, one sample of each mesh size will be preserved in 10% formalin, and the other in 95% non-denatured ethanol (required for molecular identification).

A quantitative subsample will be removed from one 150 µm net for experiments designed to estimate the grazing impact of the meta-zooplankton through fecal pellet production. The zooplankton subsamples will be incubated in chambers with mesh-bottoms that allow fecal pellets to fall through. The subsample and fecal pellets are preserved separately at the end of the experiment. These short-term experiments will help establish the strength of coupling between the pelagic and benthic realms.
3.3. **Analytical Procedures**

3.3.1. **Metazooplankton**

Formalin-preserved samples will be processed for quantitative determination of species composition and biomass (predicted). During processing, all larger organisms (primarily shrimp and jellyfishes) will be removed, enumerated, and weighed; then, the sample will be Folsom split until the smallest subsample contains about 100 specimens of the most abundant taxa. The most abundant taxa will be identified, staged, enumerated, and measured. Each larger subsample will be examined for less-abundant taxa.

To estimate biomass, blotted wet weights of larger animals will be weighed directly, whereas the weight of smaller animals will be predicted from measurements of length using species-specific relationships. The data will be uploaded to an Excel and/or Microsoft Access database for sorting and analysis. At present, multidimensional scaling of similarity or dissimilarities between samples has proven an effective method of revealing distributional patterns and will be conducted with the Primer software package.

Ethanol samples will be scanned for representatives of the species and contribute to a growing international “molecular bar-coding” library focused on the Cytochrome Oxidase I gene. We will also use molecular approaches to look at species-specific patterns with the most abundant calanoid copepod genus, *Pseudocalanus*, a species complex thought to hold a sensitive signal of Pacific water mass penetration in the Arctic.

3.3.2. **Data-storage Procedures**

Data files collected during cruises will be backed up periodically, and multiple copies will be transported back to UAF at the completion of each cruise along with copies of notebooks. At UAF, data are routinely backed up onto departmental servers.

3.3.3. **Quality-control Procedures**

In the field, samples are always collected in duplicate; so that any discrepancy in the flowmeter readings become readily apparent. Periodically, the same subsamples are processed by several technicians to ensure taxonomic consistency. When taxonomic questions arise, specimens will be compared with the voucher set or appropriate taxonomic experts will be consulted.
4.0 OBSERVATIONS OF OCEAN ACIDIFICATION

JEREMY T. MATHIS, PHD

INSTITUTE OF MARINE SCIENCES, UNIVERSITY OF ALASKA, FAIRBANKS, AK

4.1 Introduction

4.1.1 Background and Importance

It has been shown that shelf surface waters experience large seasonal drawdown of carbon dioxide (pCO$_2$) and dissolved inorganic carbon (DIC) during the open water season. This is associated with high rates of phytoplankton primary production (PP) and cooling during water transit poleward. Although, there have been relatively few studies of the marine carbon cycle in the northeastern Chukchi Sea.

As a consequence of the ocean uptake of anthropogenic CO$_2$, surface pCO$_2$ and DIC contents have increased, while pH has decreased in the upper ocean over the last few decades. This gradual process, termed ocean acidification, has long been recognized by chemical oceanographers. Ocean acidification and decreased pH reduces the saturation states (Ω) of calcium carbonate (CaCO$_3$) minerals such as aragonite (Ωaragonite) and calcite (Ωcalcite), with many studies showing decreased CaCO$_3$ production by calcifying fauna and increased dissolution of CaCO$_3$ in the water-column and sediments.

4.1.2 Purpose of Study

In the Arctic Ocean, potentially corrosive waters are found in the halocline layer of the central basin. In the Chukchi Sea, waters corrosive to CaCO$_3$ seasonally impact the shelf sediments and benthos due to summertime phytoplankton PP, vertical export of organic carbon, and buildup of CO$_2$ in subsurface waters that has been amplified by ocean acidification over the last century. It is essential to survey the region to provide oceanographic context, because the study area is near the historical transition between Alaska Coastal waters and Bering Shelf waters, both of which have unique assemblages of benthic calcifiers which are a critical component of the food web and particularly sensitive to ocean acidification. It is therefore critical to assess the extent and controls on ocean acidification concurrent with other physical and chemical (i.e., nutrients) oceanographic measurements to ensure that appropriate baselines are available for the water column. Additionally, the opportunity will also be taken to study the structure of the phytoplankton community, through pigment extractions, as important parameters in the assessment of water quality and are also used as ecological indices. Furthermore, these extractions will allow for mapping phytoplankton populations and monitoring their abundance and composition.

4.2 Methods and Procedures

4.2.1 Sampling or Survey Design and Technical Rationale

Water will be collected at all stations from the CTD. These will be used to determine pH and water column carbonate chemistry including saturations for the two most important carbonate ions (calcite and aragonite).

4.2.2 Sample Data Collection Procedures

Samples for DIC/TA will be drawn from the core hydrography CTD/hydrocast. Samples are fixed with saturated mercuric chloride solution (200 µl), the bottles sealed, and stored until analysis. To eliminate the handling of mercuric chloride onboard the vessel the sample bottles will be pretreated. The bottles will then be filled using a piece of flexible Teflon tubing attached to the Niskin bottle. An effort will be made to reduce the amount of bubbling that occurs while the bottle is filled. Additionally, samples will be taken from the core hydrography CTD/hydrocast for analyzing photosynthetic pigments of phytoplankton. Between 4-6L of seawater will be filtered at -0.2bar max through 47mm GF/F. Filters will be flash frozen in liquid nitrogen. Around 100 samples will be taken in total.
4.2.3. Analytical Procedures

Dissolved Inorganic Carbon/Total Alkalinity (DIC/TA) samples will be shipped back to Fairbanks and analyzed using a VINDTA (Versatile Instrument for Detection of TA) analytical system in UAF’s Chemical Oceanography lab. High-quality DIC data is achieved using a highly precise (0.02%; 0.4µmoles kg-1) VINDTA-coulometer system. Accuracy of DIC (and TA) measurements will be maintained by routine analyses of Certified Reference Materials (CRM, provided by A.G. Dickson, Scripps Institution of Oceanography).

Phytoplankton pigment analysis will be conducted using High Performance Liquid Chromatography (HPLC). This is a rapid technique that allows the identification of phytoplankton groups. Pigment samples will be shipped back to Fairbanks in a cooler with dry ice and analyzed using an HPLC instrument.

4.2.4. Data-storage Procedures

Data files collected during cruises will be backed up periodically, and multiple copies will be transported back to UAF at the completion of each cruise along with copies of notebooks. At UAF, data are backed up routinely onto departmental servers.

4.2.5. Quality-control Procedures

Inorganic carbon datasets from the project will be prepared expeditiously in post-cruise analysis and synthesis using established integrated steps. For water-column observations, QC/QA protocols follow established methods for the repeat hydrography and U.S. time-series programs. Routine CRM analyses provide high-quality data and initial QC/QA diagnostics for DIC and TA measurements from the field program. Subsequently, DIC and TA data will be merged with core hydrographic data (e.g., T, S, inorganic nutrients) and quality flagged as good, questionable and bad data (e.g., bottle misfires, analytical problems, etc.).

HPLC protocol will follow the method used by the Bermuda Atlantic Time series Study. The instrument will be calibrated once a year using high quality standards for 18 different pigments.
5.0 BENTHIC ECLOGY

ARNY L. BLANCHARD, PhD

INSTITUTE OF MARINE SCIENCES, UNIVERSITY OF ALASKA, FAIRBANKS, AK

5.1 Introduction

5.1.1. Background and Importance

The sediment-dwelling invertebrate (benthic) communities of the northeastern Chukchi Sea are diverse, abundant, and biomass is high. The well-developed benthic communities result from the shallow waters which allow large proportions of primary production to reach the seafloor. The rich benthic communities fill an enhanced role in the Chukchi Sea ecosystem by recycling nutrients, structuring sediments, and providing energy resources for the larger Arctic ecosystem. Large, energy-rich benthic fauna in the study region are prey items for numerous higher trophic-level organisms including benthic-feeding fish, gray whales, seals, and walrus. Ecosystem linkages with the benthic community also extend to subsistence communities that depend on Arctic marine mammal populations.

Continued declines in the extent of sea ice reflects geographic-scale processes altering ecosystems of the Arctic Ocean as well as opening the region to increased anthropogenic activities and stresses. Changes in benthic communities are considered primary indicators of disturbance due to their sessile lifestyles and responsiveness to environmental variations but data are not available to understand ecologically-significant, temporal changes in the northeastern Chukchi Sea. The inadequate database for benthic fauna from the study area (prior to 2008) is a data gap being filled by the present study. Disturbance to the short food chains in the arctic has the potential for impacting higher trophic levels thereby making the assessment of benthic communities a critical component for environmental monitoring. The role of benthic fauna as a food base for multiple, higher trophic levels in the Chukchi Sea requires a full understanding of environmental drivers of benthic communities as changes in benthic resources will extend to the highest trophic levels of the ecosystem.

5.1.2. Purpose of Study

The objectives of the benthic ecology component are to determine infaunal species abundance, composition, distribution, and taxonomy to evaluate spatial and temporal variability of benthic communities. A multi-year record of variability is required to understand temporal variations in benthic communities and, to support this, sampling of selected sites will continue in 2013. Continuation of the benthic ecology investigation will provide background information for environmental impact statements and future monitoring efforts. Portions of the study will comprise Master’s theses for three students at UAF.

5.1.3. Objectives

The objective of this study is to understand the ecology of macrobenthic fauna in the Burger, Klondike, and Statoil survey areas. The study will encompass field sampling for smaller invertebrates living within the sediments (infauna) to determine the community structure of the benthos, collect organisms to be analyzed for caloric content, and collect sediments for organic content, grain-size, and chlorophyll-α determinations. The field portion also includes a survey of epifauna (larger animals living on the sediment surface) using video photography as logistics allow. Specific objectives of this year’s work are:

Task 1: Benthic ecology: Infauna.

- Sample the infauna to assess species composition, abundance and biomass, and to document community structure.

Task 2: Benthic ecology: Epifauna.
- Sample the epifauna using digital photography to quantitatively assess species composition and abundance.

Task 3: Report results.

- Determine spatial and temporal variability of infaunal communities within the Klondike, Burger, and Statoil study areas 2008-2013.
- Determine associations of measured physical factors to faunal community structure.
- Provide preliminary assessments of the potential linkages between macrofauna and higher predators (e.g., marine mammals).

Task 4: Statistical methodology.

- Assist with integrated statistical methodologies for ecological data analysis for the CESP group.

5.2. Methods and Procedures

5.2.1. Sample Data Collection Procedures

Benthic invertebrates will be sampled using a double 0.1 m² van Veen grab sampler at up to 35 benthic stations that encompass the Burger, Klondike, and Statoil survey areas. At each station, three replicate samples will be collected. Three replicate samples are generally considered as the minimum number acceptable for benthic studies due to the high variability of organisms within a station. Once on board, samples will be washed through a 1.0-mm-mesh stainless-steel screen until all that is left is biological material and larger sediments. The samples will be then be transferred to a sample jar and preserved in 10% hexamine-buffered formalin. Sub-samples (20 cm² surface area and 1 cm deep) will also be taken from the unused side of the double van Veen grab and preserved. Preserved samples will be transported to Fairbanks for laboratory processing. Additionally, sediments for analyzing grain-size will be collected from the first grab at each station but from the opposite side of the van Veen grab from which the infaunal samples were gathered. Separate surface sediments will also be collected for chlorophyll and phaeopigment concentrations. These sediment samples will be frozen in the field until delivery to UAF.

Digital photography will be performed to capture still photographs and videos (as time allows) to quantitatively document the distribution and abundance of larger surface-dwelling animals (the epifauna). The photographic equipment includes a camera set in a frame which can rest on the sediment. A 0.15 m² area of the sediment surface will be photographed. Laser dots with a separation width of 10 cm will be mounted on the frame and visible in the video to assist with measuring animals and quantitatively documenting the scale of the photos. As time allows, five replicates of video footage will be taken at a maximum of 50% of the benthic stations.

5.2.2. Analytical Procedures

In the laboratory, identifications of each organism will be made to the lowest practical taxon, counted and weighed (blotted wet weight). In the laboratory, sediment samples will be analyzed for gross sediment-grain-size characteristics (percent gravel, sand, and mud).

Statistical approaches applied to the benthic data include descriptive, univariate, and multivariate methods. Descriptive measures such as average abundance (ind. per m²), biomass (g wet weight per m²), number of taxa, and diversity measures are useful for summarizing benthic infaunal information and provide a snapshot description of the benthos. Analysis of variance will be used to evaluate spatial or temporal variations in the benthic community. Multidimensional scaling will be used to document multivariate patterns in species distributions. Geostatistical methods will also be applied to determine the spatial variability of benthic communities and environmental variables. Environmental variables (water depth and sediment grain-size, as well as the results from the other components of the CESP, such bottom water salinity and temperature from physical oceanography) will be utilized to assess associations between infaunal communities and environmental factors.
The video footage of epifaunal communities will be logged and frame grabs will be extracted from the video at points when the camera sets down on the seafloor. Epifaunal organisms visible in the still frame will be counted and identified to the lowest taxonomic category possible. Sediment type and other observations of interest will be recorded. Descriptive measures such as average abundance (ind. per m2), number of taxa, and diversity measures will be used to summarize the epifaunal community.

5.2.3. Data Storage

During field sampling, the TigerObserver system will be utilized to record locations of each deployment of the van Veen grab and digital photography equipment. The success of each deployment will be noted as well as collection of additional samples from the grab. The TigerObserver system is backed up daily.

Consistent with prior methods, data for this project will be entered and stored in computer systems at UAF. The taxonomic names, counts, and wet biomass weights are entered and stored in the MS Access database and hard copies are printed out and archived as well. Computer backups of all data are performed weekly.

Voucher collections will be maintained at UAF. The voucher collection will include at least one representative specimen of each species identified in the study. Specimens will be evaluated by a taxonomic specialist to ensure correct identification as necessary. Remaining biological specimens will be stored at the IMS. Sorted sediment remains are not considered to be part of the biological samples and will be discarded once the sorting has been checked for accuracy.

5.2.4. Quality Control Procedures

On the vessel, van Veen grabs are checked for washout and completeness. Grabs with the sediment surface washed off, propped open by rocks, or otherwise deemed inadequate are rejected and another drop made.

Laboratory QA/QC methods for sorting, weighing, and data entry are adapted from EPA guidelines. At a minimum, 10% of samples are resorted to verify that 100% of the organisms in each sample are removed. Ten percent of samples are also reweighed to confirm accuracy in weighing. One hundred percent of the taxonomic determinations performed by junior taxonomists are checked and verified by a senior taxonomist until trained. Work is verified to ensure that all organism counts are accurate and all organisms are correctly identified. A voucher collection is maintained at the IMS and includes examples of organisms found throughout a forty-year study period in Port Valdez, historical studies in the Chukchi Sea, and the 2008-2012 CSESP. These collections are used to ensure that identification of organisms is consistent from year to year.
6.0 SEABIRD ECOLOGY

ROBERT H. DAY, PhD & ADRIAN E. GALL, PhD STUDENT

ABR, INC.—ENVIRONMENTAL RESEARCH & SERVICES, FAIRBANKS, AK

6.1 Introduction

6.1.1 Background and Importance

The northward flow of nutrient-rich oceanic water from the Bering Sea sustains a seabird community that otherwise would have little prey available at these high latitudes. Despite an understanding of the importance of advection to the food web of the Chukchi Sea, questions remain about the spatial and temporal scales of processes that link the Bering and Chukchi ecosystems. Historical studies in the area provided snapshots of the community composition and density of seabirds in the northeastern Chukchi Sea but did not address the variability of this community or link species to specific characteristics of their marine habitat. Seasonal and interannual changes in advection and production may have profound effects on the distribution and abundance of non-breeding, staging, and migratory seabirds that rely on these resources during the open-water season (June to mid-October).

6.1.2 Objectives

The specific objectives of the seabird component of this study are to:

- describe spatial, seasonal, and interannual characteristics of the seabird community in the development areas
- describe community-level attributes such as species-richness and species-composition
- provide detailed information on species that are of conservation concern (e.g., endangered, threatened, candidate species)
- when possible, integrate the data on distribution and abundance of seabirds in this area with the data on physical and biological oceanography that are collected concurrently by other disciplines in the CSESP study

6.2 Methods and Procedures

6.2.1 Sampling or Survey Design and Technical Rationale

We will survey seabirds (and other observers will survey marine mammals concurrently) along a series of parallel survey lines that run north-south through the study areas. The lines will be spaced 2, 3, or 4 NM apart, creating a set of 8–9 parallel survey lines in Klondike and Burger and 11 parallel survey lines in Statoil; in a few cases, lines will be closer than 3 or 4 NM apart so that we can use the existing set of survey lines. Each survey line within the Klondike and Burger study-area boxes is 30 NM long, and every other line will coincide with, or be near, a line of oceanographic stations that will be sampled by other researchers on the boat. Because the Statoil box is not a box, the lines are of more variable length, but the total square area is approximately the same. At a ship's speed of ~8 kt, each of the 30-NM lines can be surveyed in ~4 h, so several lines may be sampled in a day if weather and daylight permit. However, if inclement weather is limiting our ability to sample the entire area, the top priority on a cruise will be those lines that include the core parts of each study-area box. If possible, the Klondike, Burger, and Statoil study areas will be surveyed at least once over a period of ~6 days on each of the 2 research cruises.

An important aspect of the study design is the use of line-transect sampling within a zone 300 m wide. The use of this sampling design allows the calculation of the bias in detectability of individual species (i.e., a small phalarope is much more difficult to detect than is a large albatross or a medium-sized gull, and large groups generally are easier to detect than are single birds). Thus, the bias in detectability of individual species will be incorporated into the abundance estimates, increasing the accuracy of the estimates.
6.2.2. Data-collection Procedures

The surveys will be conducted in 10-min counting periods (hereafter, transects) when the ship is moving along a straight-line course at a minimal velocity of 5 kt. Data will be collected 9–12 h/day, weather permitting. Surveys generally will be stopped when sea height is greater than Beaufort 5 (seas to ~6 ft), although sampling may occur in slightly higher seas if observation conditions still are good. At the beginning of each transect, observers will record start time, sea ice cover (to nearest 5%), sea height (Beaufort scale), visibility, observation conditions, and transect width. If the ship's course or speed changes substantially during a transect, that sample will be ended and a new transect will be started on the new course/with the new speed.

One observer stationed on one side of the vessel’s bridge will record all birds seen within a radius of 300 m and in a 90° arc from the bow to the beam on one side of the ship. For each bird or group of birds, the observer will record:

- species (to lowest possible taxon)
- total number of individuals in the observation
- distance from the observer when sighted (use reticle binoculars to determine distance)
- radial angle of the observation from the ship (to the nearest 1°, using an angle-board)
- number in each age-class (juvenile, subadult, adult, unknown age)
- immediate habitat (air, water, flotsam/jetsam, ice)
- behavior (sitting, swimming, feeding, comfort behavior, courtship behavior, interacting with marine mammals, other)

For birds on the water, all birds seen within the defined survey area will be counted. For flying birds, however, observers will conduct scans for them once every ~1 minute (varies with ship’s speed) and record a "snapshot" count of all birds flying within the 90° arc from the bow to the beam of the ship and within 300 m of the ship (Tasker et al. 1984; Gould and Forsell 1989). Birds that enter the count zone ahead of the ship are counted during the snapshot counts, whereas birds that enter from behind the ship (i.e., the area that already has been surveyed) are not counted, to avoid the possibility of counting birds that may be following the ship. This snapshot method reduces the bias of overestimating the abundance of flying birds.

6.2.3. Analytical Procedures

We will estimate corrected abundance (birds/km²) for each species or species-group by using distance-sampling analyses available in the program DISTANCE. The analysis consists of three steps. First, a detection function for each species is fitted to the observed distances of sightings from the transect line to estimate probability of detection for each species separately. Next, the observed flock sizes are used to estimate the mean flock size for the population. Finally, the density of birds is estimated for the entire study area by incorporating the probability of detection, the area surveyed, and the mean flock size. Results will be presented by study-area box and season and will be compared with results of previous years’ surveys.

In addition to the bird-observation data, we will use data from the physical- and biological-oceanography study components to investigate relationships between oceanographic conditions and seabird distribution and abundance. Examples of data related to individual records that we have collected include GPS locations, sea-surface temperature, sea-surface salinity, sea-surface fluorometry reading (as an indication of chlorophyll abundance), and water depth. Examples of data that may be summarized for all data collected within a study area and cruise include zooplankton species-composition, distribution, and abundance; and fish species-composition, distribution, and abundance.

We will use multivariate analyses and descriptive statistics to explore the changes in structure of the seabird community. We will summarize species-richness and species-composition of the bird community by study-area box and cruise to examine temporal and spatial patterns in these community-level attributes, using non-metric multidimensional scaling to sort a matrix of Bray–Curtis similarity coefficients and identify groups of samples within the ordination. Finally, we will determine the dominant species assemblages composing each sample. In
addition, we will use the geo-located observations to generate maps of distribution and abundance for all birds combined, for individual species of interest, and for species-groups of interest.

Additional perspective on the distribution and abundance of seabirds in this general area will be gained by a retrospective analysis of historical data on seabirds in this region. We will calculate uncorrected densities of birds \((\text{birds observed/km}^2)\) to compare our data with historical data compiled in the North Pacific Pelagic Seabird Database (NPPSD). We will partition out those historical data that apply to the general vicinity of the study-area boxes and will summarize the data to determine the abundance of seabirds. We also will compare species-composition and species-richness between the historical dataset and the results of the current study.

6.2.4. **Data-storage Procedures**

We will enter data electronically on a laptop computer real-time during the surveys. Data managers aboard the vessels will back up those data files onto the ship’s RAID array and a portable hard drive at least once every 24 h in the field. Every day, we will review the data collected with TigerObserver and saved into the project database for data proofing, management, and archiving. After the conclusion of each cruise, we will receive the observational data from OF and will load them onto the secure server at ABR, Inc. We will deliver proofed and archived data to OF as a deliverable item, following the guidelines provided by OF.

6.2.5. **Quality-control Procedures**

Prior to surveys, the Co-PIs will conduct data-collection, identification, and data-entry training for personnel who will be participating on these cruises. The data-collection training will emphasize detailed procedures for detecting and quantifying bird observations within the survey area. The identification training will emphasize the primary species that may occur in the study area and molt sequences for aging birds in the field. When possible, photographic slides or written documents will be used. The data-entry training will emphasize an understanding of the data-entry software itself and entry procedures.

Data will be entered on the laptop real-time during the surveys. A field notebook and digital voice recorder also will be kept at the observation station, so that the observer can record any adjustments or corrections that may arise during the surveys. Each survey file will be reviewed for accuracy and completeness at the end of a survey day, and any corrections noted during the surveys will be made to the survey file at that time. Each record will be identified with the initial of the observer. Upon receipt by ABR, any changes to records will be noted in a separate table within the Microsoft Access database that we use for analysis.
7.0 MARINE MAMMAL ECOLOGY

LISANNE AERTS, PhD
LAMA ECOLOGICAL, ANCHORAGE, AK

7.1 Introduction

7.1.1 Background and Importance

Marine mammal research in the Chukchi Sea has a history spanning at least 30 years. A large amount of this research was initiated in response to the presence of potential oil and gas reserves. An extensive research program was developed under the Outer Continental Shelf Environmental Assessment Program (OCSEAP) in 1975, with the objective to collect sufficient data for predicting potential impacts from oil and gas exploration and development and identify mitigation measures to minimize these impacts. Some of the research programs under this initiative are still ongoing, e.g., the Bowhead Whale Aerial Survey Program (now referred to as ASAMM). From 1989 to 1991, marine mammal monitoring and acoustic programs were implemented as part of industrial activities in the Chukchi Sea, primarily as mitigation but also to document potential impacts from anthropogenic activities.

Since about the early 2000s, there has been an increased focus on marine mammal and other environmental research in the Chukchi Sea, mainly due to a renewed interest in offshore oil and gas activities, and more recently in consideration of possible threats to the Arctic marine ecosystem from climate change. Although research effort in the Chukchi Sea has been extensive, most studies were designed and implemented as stand-alone programs, making it difficult to integrate research findings.

7.1.2 Objectives

The main goal of the sixth year of this survey is to better understand the dynamics of marine mammal abundance and distribution and the underlying mechanisms behind the observed variability.

There are four general objectives identified to achieve this main goal.

- Determine marine mammal species composition and numbers for each prospect-specific study area and the Greater Hanna Shoal study area.
- Determine the annual and seasonal abundance of marine mammal species within the three prospect-specific study areas and the Greater Hanna Shoal study area by calculating corrected densities.
- Identify habitat use and importance of the study areas for marine mammals, based on distribution and behavioral data (e.g. feeding areas, migration routes).
- Integrate results with the other components of the CSESP to increase our understanding of ecological relationships.

7.2 Methods and Procedures

7.2.1 Sampling Design

Two biologists experienced in conducting Arctic marine mammal observations will conduct daylight surveys from the bridge or bridge wings of the research vessel. In addition, an on-board Inupiat communicator will assist with marine mammal observations during daylight hours from the bridge. During the dedicated line-transect surveys, the biologist will record all marine mammals sighted along transect lines in each of the three study areas, and along transect lines from the study areas to Wainwright during crew changes and resupply trips.

7.2.2 Data-collection Protocols and Procedures

At least one dedicated biologist observer will systematically scan an area of 180° centered on the vessel’s trackline with the naked eye and reticle binoculars, while the vessel moved along the tracklines at a speed of 8–9 knots.
Observers will alternate every two hours for about a total of 10 to 14 hours per day, depending on weather conditions, day length, and the schedule of other scientific activities on the vessel. Data was defined as “on-effort” anytime the vessel was within 600 m of the transect line and traveling at least 6 knots. If the vessel strayed beyond this distance or traveled below the set speed, the data was defined as “off-effort.”

7.2.3. **Analytical Procedures**

The data analyses approach will mainly be determined by the sample size of the marine mammal data collected in 2013, but will be conducted in combination with available data from 2008 to 2012. Analyses will include simple summary statistics of effort, species sighted, abundance, behavior, etc. In addition, the Program Distance will be used to estimate spatial and seasonal densities of species with a high enough sample size. Depending on the data quality and sample sizes, density plots or kernel density maps will be generated that show effort corrected ‘hot spot’ areas of certain marine mammal groups or, if possible, for each species. Marine mammal data from historical studies and from other ongoing surveys in the area will be taken into account where possible. Data from other disciplines, such as marine mammal vocalizations and benthic data will be incorporated in the analyses where possible and applicable.

7.2.4. **Data-storage Procedures**

Each day, after the end of the observation period, the field data entered on the Toughbooks and vessel data recorded by TigerNav will be synchronized to the server. A copy of the raw marine mammal data will remain stored on the Toughbook, as well as in the master database on the server computer. The main server contains a system containing a redundant array of independent disks to preserve storage reliability and data integrity. Furthermore, the server is connected via USB to a 2TB external hard drive, used as a third backup of all data files. All marine mammal data is contained in MS Access database with associated metadata.

7.2.5. **Quality-control Procedures**

The lead observer or PI are responsible for checking the integrity of the recorded data. The TigerObserver software contains a function that allows the lead observer or PI on the vessel to perform a quality control of the database entries in either Microsoft Access or Excel formats. Additional checking will occur in the office after the field season using, among other, GIS-based software.
8.0 CHUKCHI SEA ACOUSTIC MONITORING

JULIEN DELARUE

JASCO APPLIED SCIENCES, HALIFAX, NS

8.1 Introduction

8.1.1 Background and Importance

Marine mammal species in the Chukchi Sea use sound for communication, navigation, predator avoidance, defense, breeding, care of young, and feeding. Industrial activities in the region will generate underwater noise that could interfere with the natural uses of sound listed above. Noise exposures can also induce physiological responses that could lead to secondary effects such as habitat abandonment and reduction of foraging or breeding efficiency.

8.1.2 Purpose of Study

The overall program in the Chukchi Sea is designed to address the ambient and industrial sound levels in the region; detect and classify species of vocalizing marine mammals in the prospects; and detect and classify species within the regional study area. The arctic seas have historically experienced less industrial activity than most other marine environments. Marine mammals in the Chukchi consequently have had less opportunity to habituate to anthropogenic noise. Regulatory permitting for recent projects has acknowledged this and as a result applied rather strict requirements for operators working in the Chukchi Sea to quantify and mitigate sound exposures of marine mammals. The 2013 passive acoustic monitoring program continues the jointly-sponsored Chukchi Sea acoustic studies performed yearly from 2006 to 2012 by COP, Shell, and Statoil using similar equipment and deployment locations. However, COP and Statoil have elected to not participate in the deployment of any overwintering recorders in 2013 or the deployment/recovery of any Barrow recorders. The proposal also includes deployment and retrieval of 11 summering moorings for Shell on the Burger study area.

8.1.3 Objectives

The proposed acoustics program has been designed to address the following main goals: 1) to assess ambient and industrial noise levels and 2) to detect and classify species of vocalizing marine mammals over the eastern Chukchi Sea and in vicinity of the Burger, Klondike, and Statoil prospects.

8.2 Methods and Procedures

8.2.1 Equipment and Sampling Parameters

The 2013 acoustics field program will involve deploying 42 autonomous acoustic recorders in two separate cruises (Figure 2). The nine (9) recorders that were deployed in mid-October 2012 will be recovered in mid- to late-July 2013 (CL50, PL50, PLN40, PLN80, W35, W50, WN20, WN40, B5). If ice conditions allow, the six (6) recorders deployed in late summer 2012 on Hanna Shoal region (PLN100, PLN120, WN60, WN80, PBN20, PBN40) will be recovered at the same time. If ice conditions do not allow, these recorders will be recovered in mid-October. In late July-early August, 23 recorders will be deployed to record continuously to approximately mid-October. These recorders will operate on a full duty cycle. The three recorders near Barrow (B5, B15, B30) will be deployed/recovered for Shell. Additionally, we will deploy eight recorders in October 2013 for Shell at locations to be identified by Shell, and 11 recorders in late July/early August to record continuously to approximately mid-October, at various distances from the Burger drillsite.

The acoustic data acquired from recorders retrieved in 2013 will be analyzed to detect vocalizations and classify the calling species using approaches similar to those employed for analysis of the previous seasons’ data. This dataset will for the second time include winter recorders deployed over the north side of Hanna Shoal, and generally further north than any dataset collected by this program until the summer 2011. All acoustic measurements will be performed using JASCO’s calibrated autonomous multi-channel acoustic recorders (AMARs). All recorders will be configured with omni-directional hydrophones. The hydrophones are
calibrated in the lab prior to deployment, and a final calibration is performed in the field immediately prior to
deployment and upon retrieval using a pistonphone calibrator that generates a reference signal accurate to 0.1
decibel (dB) at 250 Hertz (Hz). The calibration signals are recorded into the data stream for confirmation of
overall recording system gain upon data analysis.

AMARs will be used for the early summer program. We plan to set the programmable sample rate to 16,000
samples per second using 24-bit samples for all summer recorders except those around the Burger drill site.
Recordings will be continuous. These are the same settings that have been employed from 2007 to 2012. The
sampling rate is higher than used by most other long-period sound recording programs in the Chukchi Sea. The
chosen sample rate provides 8 kiloHertz (kHz) of acoustic bandwidth which is sufficient to capture a sufficient
component of beluga vocalizations and most of the frequency content of the other expected species’
vocalizations. It is not high enough to capture click sounds from harbor porpoises that are at much higher
frequencies, above 100 kHz. The Burger recorders will be set to record at 64,000 samples per second using 24-
bit samples.

The overwinter recorders will be set to sample at the same 16 kHz rate that has been used in summer and
winter recordings for this program. Due to the duration of the CSESP (>10 months) and data storage
limitations, continuous recordings are not possible and the recorders will be programmed to record 5 min
every 30 min.

The 2013 program will instrument a large area of the Chukchi Sea off the Alaskan coast. The acoustic field
measurement program will directly measure seismic survey sounds and vessel noise and is expected to detect
vocalizations from several marine mammal species, including belugas (*Delphinapterus leucas*), bowheads
(*Balaena mysticetus*), gray whales (*Eschrichtius robustus*), fin whales (*Balaenoptera physalus*), killer whales
(*Orcinus orca*), walruses (*Odobenus rosmarus*), and several species of ice seals. Other extra-limital species may
also be acoustically detected.

8.2.2. Data Extract and Backup

The acoustic data will be downloaded from the AMAR recorders after they arrive at JASCO’s laboratory in
Halifax. The data will be extracted from internal RAM memory (AMARS) and checked for quality, and then
copied to a hard disk drive array for delivery to the client. Two copies will be provided. One copy may be
retained in Halifax for analysis upon approval by client.

8.2.3. Analytical Procedures

Once back in the laboratory, 5% of acoustic data will be reviewed manually to identify the marine mammal
species present in the data. Automated detectors targeting specific species and call types will be applied to the
whole data set. The combination of these two procedures provides a comprehensive picture of the
datiotemporal distribution of marine mammal calls during the recording period. Ambient noise will be
quantified at each station. Anthropogenic noise sources will be characterized and evaluated in term of their
contribution to ambient noise and potential impact on marine mammals.

8.2.4. Quality-control Procedures

Separate quality control procedure documentation has been submitted that describes comprehensive
equipment testing that will be performed on each recorder before it is provided for deployment. The
documentation also describes the protocols employed for recording and tracking test results. Performance
metrics (e.g. system power draw, digitizer voltage sensitivity, etc.) are recorded and documented in formats
specified in the quality control documentation. The hydrophones and recording systems are calibrated prior to
leaving the laboratory, and pistonphone calibrations will be carried out immediately prior to deployment and
upon retrieval. These pistonphone tests involve recording a 1-minute calibrated pressure signal into the
recorder’s data stream to provide absolute calibration signals directly in the data.
9.0 BEAUFORT SEA ACOUSTIC MONITORING

SUSANNA B. BLACKWELL, PHD
GREENERIDGE SCIENCES, INC., SANTA BARBARA, CA

9.1 Introduction

9.1.1 Background and Importance

Sound is an important sensory modality for marine mammals, as it allows them to navigate, find food and mates, and communicate with each other. Since anthropogenic activities at sea always produce some type of sound underwater, it is important to know the effects of those sounds on the whales that inhabit the waters of the Beaufort Sea. Possible effects on bowhead whales are of particular concern since the species is an important food source for the native people of Alaska and the activities related to the hunt are part of their cultural heritage.

9.1.2 Purpose of Study

The objectives of the acoustics program are to characterize industrial sounds and marine mammal vocalizations in the Alaska Beaufort Sea by investigating possible effects of anthropogenic sounds on measurable aspects of bowhead whale behavior, such as call detection rates and whale movements.

9.2 Methods and Procedures

9.2.1 Equipment Description and Field Procedures

The 2013 acoustics program will involve deploying 40 directional autonomous seafloor acoustic recorders (DASARs), including five main arrays of three to thirteen recorders at sites between Harrison Bay and Kaktovik, Alaska (Figure 3).

Recordings of the locations of calling whales using passive acoustics will be made using DASARs model C08 (DASAR-C08). The DASAR consists of a pressure housing (17.8 cm high and 32.4 cm in diameter, or ~7 inches and 12.75 inches, respectively) containing the recording electronics and alkaline batteries. A sensor suspended elastically about 12.7 cm (5 inches) above the pressure housing includes two particle motion sensors mounted orthogonally in the horizontal plane for sensing direction (i.e., the particle motion sensors allow calculation of the bearing to a sound of interest). It also includes a flexural pressure transducer for the omnidirectional sensor.

Photograph of DASAR

The DASAR pressure housing is bolted to a square frame with 66 cm (26”) sides. A spandex “sock” stretched over the tubular “cage” surrounding the pressure housing protects the sensors from motion in water currents. The total in-air weight is ~32.2 kilogram (kg) (71 pounds [lb]) and the in-water weight is ~15 kg (33 lb).
DASARs record sound at a 1 kHz sampling rate (1000 samples / s) on each of three data channels: (1) an omnidirectional channel, (2) a “cosine channel” on the primary horizontal axis, and (3) a “sine channel” on the axis perpendicular to the cosine channel. Each channel has maximum sensitivity in its primary direction, and the sensitivity falls off with the cosine of the angle away from the axis. The recorder includes a signal digitizer with 16-bit quantization. The samples are buffered for about 45 minutes, then written to an internal 60 GB hard drive, which takes about 20 s. Allowing for anti-aliasing, the 1 kHz sampling rate allows for 116 days of continuous recording and a data bandwidth of 450 Hz.

DASARs will be installed on the seafloor with no surface expression, which is important to avoid entanglement with ice floes. One corner of the DASAR frame will be attached with a shackle to 110 m (360 ft) of “ground line”, which will end with 1.5 m (5 ft) of chain and a small Danforth anchor. During deployment, the DASAR will be lowered onto the seafloor using a line passed through the loop at the top of the “cage”. One end of the lowering line will then be released from the vessel and the line retrieved. The vessel will then move away from the DASAR location while laying out the ground line in a straight line. As the end of the ground line is reached, the Danforth anchor will be dropped into the water. GPS positions will be obtained of both the DASAR and anchor locations.

The DASARs will be retrieved by grappling. The grappling setup will consist of two four-prong grappling hooks interconnected with a four-foot section of long-link chain. They will be dragged over the center of the ground line and perpendicular to it.

9.2.2. Sample Data Collection Procedures

As the Beaufort Sea Acoustic Monitoring Program is directly funded by Shell, data collection procedures are not included as part of this study plan prepared by OF.

9.2.3. Analytical Procedures

After retrieval, the DASARs will be opened up and dismantled. The sampling program will be shut down, the 60 GB hard drives removed and hand-carried back to Greeneridge headquarters where they are backed up. Data will be transferred to workstations running MATLAB and custom analysis software.

The analysis portion of this program is funded directly by Shell and is therefore not included as part of this study plan prepared by OF.

9.2.4. Data Storage

As the Beaufort Sea Acoustic Monitoring Program is directly funded by Shell, data storage procedures are not included as part of this study plan prepared by OF.

9.2.5. Quality Control Procedures

DASAR Hydrophone Calibration

The omnidirectional hydrophone in each DASAR, an acoustic pressure sensor, will be used for sound pressure measurements of the background and whale calls. The hydrophone was procured with information from the manufacturer permitting their sensitivity to be computed. In addition, in Spring 2008 two DASARs were taken to the U.S. Navy’s sound transducer calibration facility TRANSDEC at San Diego, for calibration. The two DASARs calibrated at TRANSDEC were then used as secondary standards for comparison with the remaining DASARs. The DASAR sensitivities are very stable and do not vary significantly from year-to-year.

Clock and Bearing Calibrations in the Field

When DASARs are lowered to the seafloor there is no way to control their orientation in relation to true north. In addition, each DASAR contains a clock that has a small but significant drift, which needs to be compensated for over the course of the deployment period (Greene et al. 2004). Field calibrations consist of projecting test sounds underwater at known times and known locations, and recording these sounds on the DASARs. After
processing, the collected data allow us to determine each DASAR’s orientation on the seafloor, so that the absolute direction of whale calls can be obtained. The calibration transmissions also will allow us to synchronize the clocks from the various DASARs, so that the bearings from a call heard by more than one DASAR can be combined, allowing an estimate of the caller’s position by triangulation. Calibration transmissions will be projected at three locations around each DASAR, at a distance of about 4 km.

Equipment used for calibrations included a J-9 sound projector, an amplifier, a computer to generate the projected waveform, and a GPS to control the timing of the sound source. The waveform projected will consist of a 2-s tone at 400 Hz, a 2-s linear sweep from 400 to 200 Hz, a 2-s linear sweep from 200 to 400 Hz, a 2-s linear sweep from 400 to 200 Hz, and finally a 4-s long section of pseudo-random noise, i.e., an m-sequence with 255 chips, repeated once every second and on a 255 Hz carrier frequency. Each site will be calibrated directly following the deployment of its DASARs, and again before retrieval.

Health Checks

To insure that the recorders and their software are functioning as expected, a health check will be performed on each DASAR during the calibrations following deployment. Each DASAR will therefore be health-checked after it had the chance to write data to disk one or more times (this happens about every 45 min during normal recording). A surface-deployed transducer (a line-mounted Benthos DRI-267A Dive Ranger Interrogator) will be placed in the water at the recorded GPS location of each DASAR. The transducer interrogates an acoustic transponder (Benthos UAT-376, operational range 25–32 kHz) in each recorder, which responds on one channel if it is recording and on another channel if it is not.
10.0 METOCEAN INSTRUMENTATION

ADCP & IPS – ASL ENVIRONMENTAL SERVICES, INC. – TODD MUDGE

METOCEAN BUOYS & AWAC – RPS EVANS HAMILTON, INC. – KEVIN REDMAN

10.1. Summary

As part of the mooring program in both the Beaufort and Chukchi Seas, a variety of instruments are deployed. Figure 3 shows the locations in the Chukchi Sea, Figure 3 Shows the locations in the Beaufort. The following instruments are included:

- **Metocean buoys (MOB):** anchored on the seafloor, and floating at the surface to collect ambient and seawater temperature, wind, and other meteorological data. These are managed by RPS Evans-Hamilton (RPS EH).

- **Upward-looking Sonar (ULS) packages** (a combination of Ice Profiling Sonar [IPS] and Acoustic Doppler Current Profilers [ADCP] instruments): anchored on the seafloor and float just above the seafloor, to collect current and ice speeds in the water column over a period of one year. These are managed by ASL Environmental Services.

- **Acoustic Wave and Current Profiler (AWAC):** anchored on the seafloor for profiling currents, waves and ice. This program consists of recovery only in the Chukchi Sea (Burger) and one deployment only in the Beaufort Sea (Camden Bay). These are managed by RPS EH.

10.2. Metocean Buoys

Three met-buoys will be deployed in the Chukchi Sea for COP, Shell, and Statoil: one in the vicinity of the Klondike study area (MOB1), one in the vicinity of the northern Burger/ southern Statoil study area (MOB2), and one to the west of the entire study area (MOB3). There are two types of met-buoys used, two are the Fairweather DART buoy (MOB1 & 2) and one RPS EH buoy (MOB3). Diagrams of the buoys are shown below. This includes recovery at the end of the open water season. Data from the met-buoys are managed by RPS EH and data are available on a public website (rt.ehihouston.com).

Two met-buoys will be deployed in the Beaufort Sea for Shell: one in the Harrison Bay area (HB02) and one in the Camden Bay area (CB01). All buoys will collect the following information, with the exception of HB02 which does not collect wave and current data:

- Wind direction and speed
- Air temperature and humidity
- Multi-plate radiation
- Atmospheric pressure
- Water temperature
- Wave heights and periods
- Ocean currents

For the 2013 season, the CB01 buoy will have five in-situ CTD units attached to the mooring cable at discrete depths approximately 4 meters apart. Data collected through the 2013 season will be available to the program following retrieval of the buoy in October.
10.3. **ULS Packages (IPS + ADCP)**

ASL Environmental Sciences (ASL) has been contracted by Shell and COP since 2008 to collect and analyze data on ice drafts, ice velocities, ocean current profiles, non-directional waves, salinity, and temperature in the Chukchi Sea and by Shell in the Beaufort Sea. Measurements were obtained with upward looking sonar (ULS) instrumentation in taut-line moorings. The primary instruments utilized in this study were the Ice Profiling Sonar (manufactured by ASL), which allows measurements of ice keel depths, and the Teledyne RDI Acoustic Doppler Current Profiler (ADCP), which measures ice and ocean current velocities. A diagram of these instruments is shown below.

The instruments are deployed for one year and recovered in the following season. COP and Statoil have elected to not deploy any overwintering equipment in 2013, so we will be retrieving those packages and not redeploying. The Chukchi Sea currently has 6 ULS packages:

- One pair near Klondike for COP; these will not be redeployed, but will be retrieved in late July/early August.
- One pair near Wainwright for COP; these will not be redeployed, but will be retrieved in late July/early August.
- Two pair in Statoil area for Statoil; these will not be redeployed, but will be retrieved in late July/early August.
- One pair in Crackerjack area for Shell; these will be retrieved, refurbished and redeployed.
- One pair in the Burger area for Shell; these will be retrieved, refurbished, and redeployed.
- Two pair from the Camden Bay area for Shell will be retrieved and redeployed in the potential pipeline area for Shell off Wainwright.

10.1. AWAC

A Nortek 600 kHz AWAC within a trawl resistant bottom mount (TRBM) will be deployed in Camden Bay in the Beaufort Sea. The TRBM is equipped with a diverless recovery system consisting of an acoustic release, coupled with a rope and recovery buoy. The AWAC will remain deployed over-winter with recovery during the 2013 season. The AWAC currently deployed in the Chukchi Sea (Burger) will be retrieved and not redeployed during the 2013 season. Data from this AWAC will be processed and available to the science team.
Appendix A
Maps of Study Areas
2013 Moorings
- ASL Overwintering (ADCP/IPS)
- RPS EHI Overwintering (AWAC)
- RPS EHI (Metoecean)
- JASCO (Acoustic)
- JASCO Overwintering (Acoustic)

2012 Overwinter Mooring Retrievals
- JASCO Acoustic Retrieval Only
- ASL ADCP/IPS Retrieval Only

Leases
- ConocoPhillips
- Shell
- Statoil
- Repsol
- ENI Petroleum
- Iona Energy
- Alaska-Russia Border
- MMS 3 Mile Limit
- MMS 8G Line (6 Mile Limit)
- Polynya Zone
- Spectacled Eider Critical Habitat

Study Area - Chukchi 2013. mxd
Appendix B
Project Organization Charts
Appendix C
Project Schedule
<table>
<thead>
<tr>
<th>Description</th>
<th>Approx. Start Date</th>
<th>Approx. Stop Date</th>
<th>Length (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rig up - Seattle</td>
<td>16-Jun</td>
<td>23-Jun</td>
<td>8</td>
</tr>
<tr>
<td>Transit to Seward</td>
<td>24-Jun</td>
<td>30-Jun</td>
<td>7</td>
</tr>
<tr>
<td>Mob in Seward</td>
<td>1-Jul</td>
<td>12-Jul</td>
<td>12</td>
</tr>
<tr>
<td>HSE Seminar, Anchorage</td>
<td>8-Jul</td>
<td>12-Jul</td>
<td>5</td>
</tr>
<tr>
<td>Transit to Nome</td>
<td>13-Jul</td>
<td>20-Jul</td>
<td>8</td>
</tr>
<tr>
<td>Mob in Nome - with Norseman II</td>
<td>21-Jul</td>
<td>24-Jul</td>
<td>4</td>
</tr>
<tr>
<td>Transit to Chukchi</td>
<td>25-Jul</td>
<td>26-Jul</td>
<td>2</td>
</tr>
<tr>
<td>JS Mooring, CHUKCHI</td>
<td>27-Jul</td>
<td>2-Aug</td>
<td>7</td>
</tr>
<tr>
<td>crew change - WAINWRIGHT</td>
<td>3-Aug</td>
<td>3-Aug</td>
<td>1</td>
</tr>
<tr>
<td>JS Science #1 Cruise, CHUKCHI</td>
<td>4-Aug</td>
<td>21-Aug</td>
<td>18</td>
</tr>
<tr>
<td>crew change - WAINWRIGHT</td>
<td>22-Aug</td>
<td>22-Aug</td>
<td>1</td>
</tr>
<tr>
<td>Shell BES, CHUKCHI</td>
<td>23-Aug</td>
<td>5-Sep</td>
<td>14</td>
</tr>
<tr>
<td>crew change - WAINWRIGHT</td>
<td>6-Sep</td>
<td>6-Sep</td>
<td>1</td>
</tr>
<tr>
<td>OF test/Standby</td>
<td>7-Sep</td>
<td>12-Sep</td>
<td>6</td>
</tr>
<tr>
<td>crew change - WAINWRIGHT</td>
<td>13-Sep</td>
<td>13-Sep</td>
<td>1</td>
</tr>
<tr>
<td>JS Science #2 Cruise, CHUKCHI</td>
<td>14-Sep</td>
<td>6-Oct</td>
<td>23</td>
</tr>
<tr>
<td>crew change - WAINWRIGHT</td>
<td>7-Oct</td>
<td>7-Oct</td>
<td>1</td>
</tr>
<tr>
<td>JS Mooring, CHUKCHI</td>
<td>8-Oct</td>
<td>17-Oct</td>
<td>10</td>
</tr>
<tr>
<td>Transit to Nome</td>
<td>18-Oct</td>
<td>19-Oct</td>
<td>2</td>
</tr>
<tr>
<td>crew change - NOME</td>
<td>20-Oct</td>
<td>21-Oct</td>
<td>2</td>
</tr>
<tr>
<td>Transit to Seward</td>
<td>22-Oct</td>
<td>30-Oct</td>
<td>9</td>
</tr>
<tr>
<td>Demob in Seward</td>
<td>31-Oct</td>
<td>3-Nov</td>
<td>4</td>
</tr>
<tr>
<td>Transit to Seattle</td>
<td>4-Nov</td>
<td>10-Nov</td>
<td>7</td>
</tr>
<tr>
<td>Demob in Seattle</td>
<td>11-Nov</td>
<td>17-Nov</td>
<td>7</td>
</tr>
</tbody>
</table>

Total: 160
<table>
<thead>
<tr>
<th>Description</th>
<th>Approx. Start Date</th>
<th>Approx. Stop Date</th>
<th>Length (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mob in Seward</td>
<td>26-May</td>
<td>26-May</td>
<td>1</td>
</tr>
<tr>
<td>Transit to Pribilofs</td>
<td>27-May</td>
<td>1-Jun</td>
<td>6</td>
</tr>
<tr>
<td>crew change - ST. PAUL</td>
<td>2-Jun</td>
<td>2-Jun</td>
<td>1</td>
</tr>
<tr>
<td>USFWS - walrus biopsy, CHUKCHI</td>
<td>3-Jun</td>
<td>30-Jun</td>
<td>28</td>
</tr>
<tr>
<td>crew change - NOME</td>
<td>1-Jul</td>
<td>1-Jul</td>
<td>1</td>
</tr>
<tr>
<td>UW Woodgate Moorings, BERING</td>
<td>2-Jul</td>
<td>8-Jul</td>
<td>7</td>
</tr>
<tr>
<td>crew change - NOME</td>
<td>9-Jul</td>
<td>9-Jul</td>
<td>1</td>
</tr>
<tr>
<td>STANDBY in Nome</td>
<td>10-Jul</td>
<td>12-Jul</td>
<td>3</td>
</tr>
<tr>
<td>USGS - walrus tagging, CHUKCHI</td>
<td>13-Jul</td>
<td>19-Jul</td>
<td>7</td>
</tr>
<tr>
<td>crew change - NOME</td>
<td>20-Jul</td>
<td>20-Jul</td>
<td>1</td>
</tr>
<tr>
<td>JOINT Mob in Nome</td>
<td>21-Jul</td>
<td>24-Jul</td>
<td>4</td>
</tr>
<tr>
<td>Transit Nome to Chukchi</td>
<td>25-Jul</td>
<td>26-Jul</td>
<td>2</td>
</tr>
<tr>
<td>JS Mooring, CHUKCHI</td>
<td>27-Jul</td>
<td>1-Aug</td>
<td>6</td>
</tr>
<tr>
<td>crew change - WAINWRIGHT</td>
<td>2-Aug</td>
<td>2-Aug</td>
<td>1</td>
</tr>
<tr>
<td>Shell Mooring, BEAUFORT</td>
<td>3-Aug</td>
<td>12-Aug</td>
<td>10</td>
</tr>
<tr>
<td>crew change - PRUDHOE</td>
<td>13-Aug</td>
<td>13-Aug</td>
<td>1</td>
</tr>
<tr>
<td>UAF TransBoundary, BEAUFORT</td>
<td>14-Aug</td>
<td>3-Sep</td>
<td>21</td>
</tr>
<tr>
<td>crew change - PRUDHOE</td>
<td>4-Sep</td>
<td>4-Sep</td>
<td>1</td>
</tr>
<tr>
<td>UAF Glider/Moorings, CHUKCHI</td>
<td>5-Sep</td>
<td>19-Sep</td>
<td>15</td>
</tr>
<tr>
<td>crew change - WAINWRIGHT</td>
<td>20-Sep</td>
<td>20-Sep</td>
<td>1</td>
</tr>
<tr>
<td>JHUAPL Moorings, CHUKCHI</td>
<td>21-Sep</td>
<td>24-Sep</td>
<td>4</td>
</tr>
<tr>
<td>crew change - WAINWRIGHT</td>
<td>25-Sep</td>
<td>25-Sep</td>
<td>1</td>
</tr>
<tr>
<td>STANDBY</td>
<td>26-Sep</td>
<td>29-Sep</td>
<td>4</td>
</tr>
<tr>
<td>Shell Mooring, BEAUFORT</td>
<td>30-Sep</td>
<td>9-Oct</td>
<td>10</td>
</tr>
<tr>
<td>crew change - PRUDHOE</td>
<td>10-Oct</td>
<td>10-Oct</td>
<td>1</td>
</tr>
<tr>
<td>Transit to Nome</td>
<td>11-Oct</td>
<td>12-Oct</td>
<td>2</td>
</tr>
<tr>
<td>crew change - NOME</td>
<td>13-Oct</td>
<td>13-Oct</td>
<td>1</td>
</tr>
<tr>
<td>Transit to Seward</td>
<td>14-Oct</td>
<td>21-Oct</td>
<td>8</td>
</tr>
<tr>
<td>Demob in Seward</td>
<td>22-Oct</td>
<td>26-Oct</td>
<td>5</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>154</td>
</tr>
</tbody>
</table>